In the exercises, from 1 to 6, evaluate the given expressions without using a calculator.
-
\[ \sin^{-1} \left( \sqrt{3}/2 \right) \]
-
\[ \sec^{-1} \left( -\sqrt{2} \right) \]
-
\[ \cos^{-1}(-1) \]
-
\[ \tan^{-1} \left( -\sqrt{3} \right) \]
-
\[ \cot^{-1}(-1) \]
-
\[ \text{cosec}^{-1}(-2) \]
-
Given \(y=\sin^{-1} \left( \frac{1}{3} \right)\), find the precise value of:
-
\[ \cos y \]
-
\[ \tan y \]
-
\[ \cot y \]
-
\[ \sec y \]
-
\[ \text{cosec } y \]
-
-
Given \(y=\sec^{-1}\left( \frac{\sqrt{5}}{2} \right)\), find the precise value of:
-
\[ \sin y \]
-
\[ \cos y \]
-
\[ \tan y \]
-
\[ \cot y \]
-
\[ \text{cosec } y \]
-
-
Given \(y=\tan^{-1}(-3)\), find the precise value of:
-
\[ \sin y \]
-
\[ \cos y \]
-
\[ \cot y \]
-
\[ \sec y \]
-
\[ \text{cosec } y \]
-
In the exercises, from 10 to 13, find the value of the expression.
-
\[ \cos^{-1} \left( \sqrt{ \frac{3}{2}} \right) \]
-
\[ \text{cosec} \left( \tan^{-1} (-2) \right) \]
-
\[ \sin \left( \tan^{-1} \left( - \frac{3}{4} \right) \right) \]
-
\[ \tan \left( \sin^{-1} \left( - \frac{3}{4} \right) \right) \]
In the exercises 14 and 15 find the value of the expression.
-
\[ \sin^{-1} \left( \cos \left( -\frac{\pi}{6} \right) \right) \]
-
\[ \tan^{-1} \left( \tan \left( \frac{4 \pi}{3} \right) \right) \]
In the exercises, from 16 to 19, find the value of the expression.
-
\[ \cos \left( \sin^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{3} \right) \right) \]
-
\[ \sin \left( 2\cos^{-1} \left( \frac{1}{3} \right) \right) \]
-
\[ \tan \left( 2 \sin^{-1} \left( -\frac{\sqrt{3}}{2} \right) \right) \]
-
\[ \cos \left( \left( \frac{1}{2} \right) \sin^{-1} \left( \frac{5}{13} \right) \right) \]
In the exercises, from 20 to 23, find the algebraic expression.
-
\[ \sin \left( \tan^{-1}(x) \right) \]
-
\[ \tan \left( \sin^{-1}(x) \right) \]
-
\[ \sin \left( \cos^{-1} \left( \frac{x}{2} \right) \right) \]
-
\[ \cos \left( \left( \frac{1}{2} \right) \cos^{-1}(x) \right) \]
Solve the following equations:
-
\[ \sin^{-1} \left( \frac{x}{2} \right) = -\frac{1}{2} \]
-
\[ \sin^{-1} \left( \sqrt{2x} \right) = \cos^{-1} x \]
-
\[ \tan^{2} x + 9 \tan x - 12 = 0 \, , \quad -\frac{\pi}{2} < x < \frac{\pi}{2} \]\[ \begin{aligned} &\tan^{2} x + 9 \tan x - 12 = 0 \, , \\[1em] &\hspace{6em} -\frac{\pi}{2} < x < \frac{\pi}{2} \end{aligned} \]
Answers
-
\[ \frac{\pi}{3} \]
-
\[ \frac{5}{4} \pi \]
-
\[ \pi \]
-
\[ -\frac{\pi}{3} \]
-
\[ \frac{3 \pi}{4} \]
-
\[ \frac{7\pi}{6} \]
-
-
\[ \frac{2}{3} \sqrt{2} \]
-
\[ \frac{1}{4} \sqrt{2} \]
-
\[ 2 \sqrt{2} \]
-
\[ \frac{3}{4} \sqrt{2} \]
-
\[ 3 \]
-
-
-
\[ \frac{1}{5} \sqrt{5} \]
-
\[ \frac{2}{5} \sqrt{5} \]
-
\[ \frac{1}{2} \]
-
\[ 2 \]
-
\[ \sqrt{5} \]
-
-
-
\[ -\frac{3 \sqrt{10} }{10} \]
-
\[ \frac{1}{10}\sqrt{10} \]
-
\[ -\frac{1}{3} \]
-
\[ \sqrt{10} \]
-
\[ -\frac{\sqrt{10}}{3} \]
-
-
\[ \frac{1}{2} \]
-
\[ -\frac{\sqrt{5}}{2} \]
-
\[ -\frac{3}{5} \]
-
\[ -\frac{3\sqrt{7}}{7} \]
-
\[ \frac{\pi}{3} \]
-
\[ \frac{\pi}{3} \]
-
\[ \frac{ 2 \sqrt{5} }{5} – \frac{ \sqrt{10} }{30} \]
-
\[ \frac{4}{9} \sqrt{2} \]
-
\[ \sqrt{3} \]
-
\[ \frac{5 \sqrt{26}}{26} \]
-
\[ \frac{ x }{ \sqrt{ 1 + x^2 } } \]
-
\[ \frac{x}{ \sqrt{ 1 – x^2 } } \]
-
\[ \frac{ \sqrt{ 4 – x^2 } }{2} \]
-
\[ \sqrt{ \frac{ 1 + x }{2} } \]
-
\[ x = 2 \sin (-0.5) \approx – 0.958851077 \]
-
\[ x = \sqrt{2} – 1 \]
-
\(x \approx 0.8673\) ó \(x \approx -1.4728682\)