-
If \(\mathit{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}\), \(A = \{x \in \mathit{U} / x \mbox{ is even}\}\), \(B = \{x / x \mbox{ is prime}\}\) and \(D = \{ x \in \mathit{U} / x \mbox{ is not a factor of 9} \}\), find:
-
\[ \complement (A \cup B) \]
-
\[ A - \complement D \]
-
\[ B - \complement D \]
-
\[ (A-B) \cup (B-A) \]
-
-
If \(\mathit{U} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \), find the sets \(A\) and \(B\):
-
\[ A - B = \{7, 9\} \]
-
\[ \complement A \cap \complement B = \{ 6 \} \]
-
\[ A \cap B = \{ 0, 5, 8 \} \]
-
-
If \(\mathit{U} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\), find the sets \(A\) and \(B\):
-
\[ (A - B) \cup (B - A) = \{0, 1, 5, 8\} \]\[ \begin{aligned} &(A - B) \cup (B - A) \\[1em] &\hspace{5em}= \{0, 1, 5, 8\} \end{aligned} \]
-
\[ \complement A \cup \complement B = \{ 0, 1, 2, 5, 6, 7, 8 \} \]
-
\[ A \cap \complement B = \{ 0, 8\} \]
-
-
Find the sets \(A\), \(B\), \(C\) and \(U\), the universal set, if:
-
\[ \complement A = \{1, 4, 7, 8, 9\} \]
-
\[ \complement B = \{2, 4, 5, 7\} \]
-
\[ \complement C = \{2, 4, 7, 8\} \]
-
\[ A \cap B \cap C = \{0, 3, 6\} \]
-
Answers
-
- \(\{ 1, 9\}\)
- \(A=\{ 2,4,6,8 \}\)
- \(\{ 2,5,7 \}\)
- \(\{ 3,4,5,6,7 \}\)
-
\[ A = \{ 0,5,7,8,9 \}, \quad B = \{ 0,1,2,3,4,5,8 \} \]\[ \begin{aligned} &A = \{ 0,5,7,8,9 \}, \\[1em] &B = \{ 0,1,2,3,4,5,8 \} \end{aligned} \]
-
\[ A = \{ 0,3,4,8,9 \}, \quad B = \{ 1,3,5,6,9 \} \]\[ \begin{aligned} &A = \{ 0,3,4,8,9 \}, \\[1em] &B = \{ 1,3,5,6,9 \} \end{aligned} \]
-
\[ A = \{ 0, 2 , 3 , 6 \} , \quad B = \{ 0, 1, 2, 6, 8, 9 \}, \quad C = \{ 0, 1, 3, 5, 6, 9 \}, \quad U = \{ 0, 1, 3, 4, 5, 6, 8, 9 \} \]\[ \begin{aligned} &A = \{ 0, 2 , 3 , 6 \} , \\[1em] &B = \{ 0, 1, 2, 6, 8, 9 \}, \\[1em] &C = \{ 0, 1, 3, 5, 6, 9 \}, \\[1em] &U = \{ 0, 1, 3, 4, 5, 6, 8, 9 \} \end{aligned} \]